博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
算法时间复杂度
阅读量:6086 次
发布时间:2019-06-20

本文共 3096 字,大约阅读时间需要 10 分钟。

转载自:

在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度,基座T(n)=O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐进算法时间复杂度,简称为时间复杂度。其中f(n)是问题规模n的某个函数。

一般用大写O()来表示算法的时间复杂度写法,通常叫做大O记法。

一般情况下,随着n的增大,T(n)增长最慢的算法为最优算法。

O(1):常数阶

O(n):线性阶

O(n2):平方阶

大O推导法:

用常数1取代运行时间中的所有加法常数

在修改后的运行函数中,只保留最高阶项
如果最高阶项存在且不是1,则去除与这个项相乘的常数

常数阶:

int sum = 0 ; n = 100;        /*执行一次*/sum = (1+n)*n/2;             /*执行一次*/printf("%d",sum);            /*执行一次*/

这个算法的运行次数f(n) = 3,根据推导大O阶的方法,第一步是将3改为1,在保留最高阶项是,它没有最高阶项,因此这个算法的时间复杂度为O(1);

另外,

int sum = 0 ; n = 100;        /*执行一次*/sum = (1+n)*n/2;             /*执行第1次*/sum = (1+n)*n/2;             /*执行第2次*/sum = (1+n)*n/2;             /*执行第3次*/sum = (1+n)*n/2;             /*执行第4次*/sum = (1+n)*n/2;             /*执行第5次*/sum = (1+n)*n/2;             /*执行第6次*/sum = (1+n)*n/2;             /*执行第7次*/sum = (1+n)*n/2;             /*执行第8次*/sum = (1+n)*n/2;             /*执行第9次*/sum = (1+n)*n/2;             /*执行第10次*/printf("%d",sum);            /*执行一次*/

上面的两段代码中,其实无论n有多少个,本质是是3次和12次的执行差异。这种与问题的大小无关,执行时间恒定的算法,成为具有O(1)的时间复杂度,又叫做常数阶。

注意:不管这个常数是多少,3或12,都不能写成O(3)、O(12),而都要写成O(1)

此外,对于分支结构而言,无论真假执行的次数都是恒定不变的,不会随着n的变大而发生变化,所以单纯的分支结构(不在循环结构中),其时间复杂度也是O(1)。

线性阶:

线性阶的循环结构会复杂一些,要确定某个算法的阶次,需要确定特定语句或某个语句集运行的次数。因此要分析算法的复杂度,关键是要分析循环结构的运行情况。

int i;for(i = 0 ; i < n ; i++){  /*时间复杂度为O(1)的程序*/      }

对数阶:

int count = 1;while(count < n){  count = count * 2;  /*时间复杂度为O(1)的程序*/    }

因为每次count*2后,距离结束循环更近了。也就是说有多少个2 相乘后大于n,退出循环。

数学公式:2x = n --> x = log2n

因此这个循环的时间复杂度为O(logn)

平方阶:

int i;for(i = 0 ; i < n ; i++){   for(j = 0 ; j < n ; j++){    /*时间复杂度为O(1)的程序*/      }    }

上面的程序中,对于对于内层循环,它的时间复杂度为O(n),但是它是包含在外层循环中,再循环n次,因此这段代码的时间复杂度为O(n2)。

int i;for(i = 0 ; i < n ; i++){   for(j = 0 ; j < m ; j++){    /*时间复杂度为O(1)的程序*/      }    }

但是,如果内层循环改成了m次,时间复杂度就为O(n*m)

再来看一段程序:

int i;for(i = 0 ; i < n ; i++){   for(j = i ; j < n ; j++){    /*时间复杂度为O(1)的程序*/      }    }

注意:上面的内层循环j = i ;而不是0

因为i = 0时,内层循环执行了n次,当i=1时,执行了n-1次……当i=n-1时,执行了1次,所以总的执行次数为:

n+(n-1)+(n-1)+...+1 = n(n+1)/2 = n2/2 + n/2

根据大O推导方法,保留最高阶项,n2/2 ,然后去掉这个项相乘的常数,1/2

因此,这段代码的时间复杂度为O(n2)

下面,分析调用函数时的时间复杂度计算方法:

首先,看一段代码:

int i,j;void function(int count){  print(count);  }for(i = 0 ; i < n ; i++){  function (i)  }

函数的时间复杂度是O(1),因此整体的时间复杂度为O(n)。

假如function是这样的:

void function(int count){  int j;  for(j = count ; j < n ;j++){        /*时间复杂度为O(1)的程序*/ }}

和第一个的不同之处在于把嵌套内循环放到了函数中,因此最终的时间复杂度为O(n2)

再来看一个比价复杂的语句:

n++;                                      /*执行次数为1*/function(n);                              /*执行次数为n*/int i,j;for(i = 0 ; i < n ; i++){                 /*执行次数为nXn*/  function(i);  }for(i = 0 ; i < n ; i++){                /*执行次数为n(n+1)/2*/  for(j = i ; j < n ; j++){      /*时间复杂度为O(1)的程序*/    }  }

它的执行次数f(n) = 1 + n + n2 + n(n+1)/2 + 3/2n2+3/2 n+1,

根据推导大O阶的方法,最终它的时间复杂度为:O(n2)

常见的时间复杂度:

执行次数函数 术语描述
12 O(1) 常数阶
2n+3 O(n) 线性阶
$3n^2+2n+1$ O($n^2$) 平方阶
$5log_2 n+20$ O($\log_2 10$) 对数阶
$2n+3nlog_2 n+19$ O(nlogn) nlog2n阶
2n+3nlog2n+19 O(n3) 立方阶
2n O(2n) 指数阶

时间复杂度所耗费的时间是:

O(1) < O(logn) < O(n) < O(nlogn) < O(n2) < O(n3) <O(2n) < O(n!) <O(nn)

转载于:https://www.cnblogs.com/myblog1993/p/9952869.html

你可能感兴趣的文章
HDU - 1789 Doing Homework again 贪心
查看>>
MySQL 忘记密码怎么办?
查看>>
Linux关闭端口
查看>>
ROS在Ubuntu下的安装
查看>>
UML类图关系全面剖析
查看>>
“问吧”调查问卷的分析总结与感受
查看>>
SQL 递归查询
查看>>
《思维导图的三招十八式》读书笔记
查看>>
为什么要努力
查看>>
EBS R12应用启用过程
查看>>
Android系统架构概况
查看>>
PHP函数索引-E
查看>>
Not Found woff 字体库
查看>>
js获取css中的样式
查看>>
移植FFMPEG到VS2008系列之二
查看>>
sklearn.datasets.make_blobs()函数用法
查看>>
高等图算法
查看>>
jquery插件之DataTables
查看>>
ModelHelper类
查看>>
Ka的递推编程练习 Part3|位数问题
查看>>